微分法在有限元分析中的应用
作者:
作者单位:

作者简介:

王朝振(1986—), 男, 学士, 工程师, 从事高铁建设施工管理工作。

通讯作者:

中图分类号:

基金项目:


Application of Differential Method in Finite Element Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于有限元原理及结构的平衡微分方程,提出了一种求解结构单元形函数的方法。首先,根据结构单元的变形微分方程求解结构变形的常系数解析式;其次,根据单元的边界条件求解相应的系数表达式,并将求出的系数表达式代到解析式中,形成关于单元局部坐标的解析式;最后,提取单元节点广义位移向量,形成单元的形函数矩阵。运用所提出的方法对结构典型杆单元、梁单元的形函数进行求解后发现,所获得的形函数与相关文献提供的形函数完全一致,表明所提方法正确有效,并且同样适用于其他结构单元形函数的求解,从而为有限元的进一步推广和拓展提供了一条行之有效的途径。

    Abstract:

    Based on the finite element principle and the structural equilibrium differential equation, a method for solving the structural unit shape function is proposed. Firstly, the constant coefficient analytic formula of structural deformation is solved according to the deformation differential equation of the structural unit. Secondly, the corresponding coefficient expression is solved according to the boundary condition of the unit. Then, the obtained coefficient expression is substituted into the analytical expression to form an analytical expression about the local coordinates of the unit. Finally, the generalized displacement vector of the element node is extracted to form the shape function matrix of the unit. It is found that after the shape functions of the typical rod unit and beam unit of the structure are solved by the proposed method, the obtained shape function is completely consistent with the shape function provided by the related literature, which indicates that the proposed method is correct and effective. And the method is also applicable to solve the other structural unit shape functions so as to provide an effective way for the further promotion and expansion of the finite elements.

    参考文献
    相似文献
    引证文献
引用本文

王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹.微分法在有限元分析中的应用[J].城市道桥与防洪,2021,(1):172-175.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-10
  • 出版日期: 2021-01-15
关闭