基于多元数据感知的路面服役韧性评价技术
作者单位:

[上海市城市建设设计研究总院(集团)有限公司, 上海市 200125]

作者简介:

蒋宏(1981—), 男, 博士, 高级工程师, 从事道路交通规划与设计工作。

中图分类号:

U416

基金项目:

基金项目: 2020年度交通运输行业重点科技项目(2020-ZD3-025)


Evaluaiton Technique of Pavement Service Resilience Based on Multivariate Data Perception
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着中国道路建设由增量模式转为存量模式,道路大规模管养时代已经到来。应用感知设备获取数据和评价路面服役韧性是交通强国战略背景下的研究趋势。首先,分析了影响路面服役韧性的内、外部影响因素,评价了既有路面服役韧性评价指标的不足。在此基础上,提出了路面服役多元感知体系的构成,主要包括交通荷载感知、路表环境感知、路基状态感知和路面服役状态感知,并根据感知设备的类型,探讨了基于深度学习神经网络的输入参量、输出参量及相关技术路线。为长寿命道路研究拓展了新思路,对实现道路健康的全过程、智能化、主动式管理,提升道路基础设施韧性有一定借鉴作用。

    Abstract:

    With the road construction from the incremental mode to the stock mode in China, the era of large-scale road management and maintenance has arrived. The application of perception devices to acquire the data and to evaluate the pavement service resilience is a research trend in the context of the strategy for building a strong transportation nation. Firstly, the internal and external factors affecting the pavement service resilience are analyzed, and the limitations of existing indicators for assessing the pavement service resilience are evaluated. On this basis, the composition of a multi-element perception system of pavement service is pointed out, mainly including the traffic load perception, pavement environment perception, subgrade condition perception and pavement service perception. And based on the types of perception equipment, the input parameters, output parameters and relevant technical approaches based on deep learning neural networks are discussed. The new idea is studied and developed for the long service life of road in order to offer the valuable guidance for achieving the overall process, intelligent and proactive management of road health, and enhancing the resilience of road infrastructure.

    参考文献
    相似文献
    引证文献
引用本文

蒋 宏,王宝辉,蔡 氧.基于多元数据感知的路面服役韧性评价技术[J].城市道桥与防洪,2023,(9):20-24.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-27
  • 最后修改日期:2023-06-12
  • 录用日期:2023-07-10
  • 在线发布日期: 2023-10-11
关闭